Optical Technique(1002-1582) Volume 32 Issue 3 2023 Impact Factor: 5.8

Level Dependent Quasi-Birth and Death
Processes of miu,.m,)/2/@.8)queues with Stalling

N. Paranjothi
Department of Statistics, Annamalai University, Annamalai nagar, Tamil Nadu, India

G. Paulraj
Department of Statistics, Annamalai University, Annamalai nagar, Tamil Nadu, India

Abstract- This Paper analyses a two server M /(M;,M,)/2/(B,,B,) queueing system with stalling where
customers are served by one fast server and one slow server. The servers are allowed to work in parallel. It has provided
a finite buffer B, of size 'K < oo ' to stall customers in queue-1 which is meant to feed the fast sever only. There is one

more buffer B, of infinite capacity, called the waiting space to accept further arrivals in queue-2 when the buffer B is

full. The primary task of B , is to feed customers to queue-1 and to the slow server as and when it is warranted. An

arriving customer who finds the queue-1 is full and queue-2 is empty joins the slow server. If the queue-2 is non-empty at
a time epoch when the slow server finishes a service, he accepts a customer from the head of the queue-2. Both arrival and
service rates of customers are assumed to be state dependent parameters for the first (K+2) states starting from state "0".
Formulating the queue length (queue +service) process of the whole system as a QBD processes, steady state results to
state probabilities and mean queue length have been obtained using matrix-analytical methods.

Keywords- Quasi-Birth and Death Processes, Fast server, Slow server, Stalling and Level dependent.

1. INTRODUCTION
Let Xl(t) be the number of customers present with Server-1 and in queue-1 at time t>0. Also

let X, (t)for t >0 be the number of customers present with Server-2. Thus Xi(t)+ Xa(t) gives the total
number of customers present in the whole system at time t>0. Further the vector process { X(t)=(X, (t), X

, (t): t=0) } is a continuous time non-homogeneous Markov process on the two-dimensional space {
(nj): n=0, 1,2,... and j=0,1 } that is portioned into levels L(0), L(1), ... where

L(n)={(n,0),(n,)} for n=0,,...,K,(K+1),(K+2), (1)

Assumptions: The transitions out of the state {(n,j):n=0, 1,2,{... } and j=0,1} is dependent on the level
L(n). Arrivals occur according to a Poisson process with mean arrival rate A,. Servers are working with

exponential service rates g4 (n) and 4, (n), (£ ,(n) > w, (n)) respectively. Two buffers B1 and B2 are

installed to accommodate customer arriving in queue-1 and queue-2 respectively: Buffer B1 is bounded
by a maximum of 'K' which stalls customers in queue-1 and if the buffer B1 is full then the buffer B2
which is unbounded receives further arrivals to form queue-2. Thus queue-1 is the queue of stalling
customers who must go to the faster server only, to get served. However queue-2 feeds both queue-1 and
the slow server whichever could first accept the head-of-the-line customer of queue-2. Each customer
who arrives when the system is idle is served by the fast server. If the fast server is busy at the time of a
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customer's arrival, then that customer joins queue-1 if it has less than K customers, is served by the slow
server if queue-1 has exactly K customers, or joins queue-2 if the system has more than K customers.
After finishing a service, fast server chooses the next customer from queue-1 (if there is one; otherwise it
idles).

The customer standing at the head of queue-2 (if there is one) leaves queue-2 and joins queue-1
provided it has less than K customers at that time point. When the slow server finishes a service, it serves
the next customer in queue-2 (if there is one; otherwise it idles). This system informs its customers that
one server is faster than the other and all arriving customers have to stall when the fast server is busy.
This paper provides some applications with numerical values to a few performance measures such as the
expected queue length, the probability that each server is busy etc., and illustrates how these values are
being used to determine the optimal value of K and the service rate for the slow server.

This queueing system is denoted as M/(M1(n), M2(n))/2/(B1, B2) and is solved by matrix-
analytic methods. It is noted that if the positive integer K is chosen such that server-1 is K times faster
than server-2, then the First-come First-served (FCFS) policy is not violated or insignificantly violated (
see Krishnamoorthy, 1963). The steady state behavior of queue length and its characteristics are then
discussed for cases of homogeneous QBD to check if they agree with the steady state characteristics of
the system that was investigated by Sivasamy et al. (2015 and 2016) and Kim et al. (2011). Replacing the

value of 4, by 'zero' in the steady state results of M/(M1,M2)/2/(B1,B2) queues, Queue length

distribution of the M/M/1 system under T-policy studied by Xuelu Zhang et al. (2015) is obtained.
Rubinovitch (1985a, 1985b) studied a Markovian queueing system with two channels (one fast and one
slow) and stalling for informed and uninformed customers and computed steady state probabilities and
characterized a few policies for overall optimization. Further, assuming that the heterogeneous channels
operate under a general discipline, Abou-El-Ata and Shawky (1999) discussed in detail when and how to
discard the slow server based on simple conditions. Again Fabricio Bandeira Cabari (2005) considered
the slow server problem of M/M/n queues for uninformed customers and established a threshold value A4

“on the arrival rate 4 and recommends that if 1< A ~the slow server should not be removed. Gumbel
(1960) has initiated the first work on Poisson queues with heterogeneous servers and measured the errors
occurring due to an assumption that all service rates are equal. Singh (1971) established an optimal
combination of service rates to minimize the cost associated with a few performance measures of M/Mi/3
queues.

This paper is organized as follows: Section 2 is devoted to study the QBD processes of the
M/(M1,M2)/2/(B1, B2) queueing model with stalling and to obtain the steady state probability
distribution of queue length process. Section 3 provides an application with a view to solve an
optimization problem through numerical illustrations. Section 4 gives a summary and scope for further
study.

2. M/(M,;,M,)/2/(B,,B,) QUEUE WITH STALLING

2.1 MODIFIED LOSS SYSTEM: M /(M;,M,)/2 /((K +1),B,) queues with stalling and no waiting
space.
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Fig. 1 A two-buffer queue, in which buffer B; stalls a maximum of K customers to

q1

be served by server Si. Infinite buffer B2 accommodates other customers when the
system size exceeds (K + 2).

If the buffer B2 is removed from the Figure 1, the result is the modified
M /(Ml, MZ)/2 /(K +1) (loss) system or a two-server system with stalling and no waiting space in

gueue-2. Here, for n=0, 1, 2, ... ,(K+1), L(n) is referred to as level 'n" and each level has two states '0 and
1' only. Thus the modified vector process defined by X(t)=(X1(t), X2(t): t=0) constitutes a finite non-
homogeneous QBD process on the finite state space SO =U0<n<(K+1)L(n) with infinitesimal generator

Q1 i.e,
LO0) L(1) L2) L(3) LK) L(K+1)
L(0) AP Al 0 0 0
L(1) AL Al AV o 0 0
L(2) 0 AP AP AP 0 0
Ql - K |
L(K) 0o 0o o 0o . AP Al
LE+np\ 0o 0o o o0 .. A AR @
forn=0,1, ... k
0
A =(20° %j ®
forn=0,1, ... Kand (K+1),
A [—%) 0 J A~ (—(An + () 0 j
#,(0) (4 + 1,(0)) H,(N) ~(4, + () + 11,(N))
AkD = (_(/’ikﬁ-l + 44 (k +1)) A j @)
o (K+1) ~(u(k+1) + 11, (k +1))

and forn=1,2, .. ., (k+1),
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Let the joint probability function of the level dependent QBD process {X(t)} of the modified
M/(M1,M2)/2 | (K+1) system be 7 ;; (t)=P( X, (t)=i, X, (t)=]) for ie {0,1,2,...,(K+1) } and je {0,1}.

It is then easy to verify that 7 ;= !im P(X, (=i, X, (t)=)) always exists. Let TII =( =z, 7, )bea

row vector of order 2 for n=0, 1, 2, ..., (K+1). Denote the stationary probability vector ~II of the QBD
process { X(t)} over the levels L(0), L(1) ... , L(K+1) by IT=(II,,IL ,IL,,..., I, ,). Let {a = !im

P(X,(t)=i: n=0, 1, ..., (K+1) } be the marginal steady-state queue length distribution. It is then computed
by

1
a,=> 7y, n=0,12,.(K+1) (6)
j=0
Let bj(t)=P(X2(t)=j) be the marginal probability that the slow server is in state j at time t >0 for
j=0, 1. Then it can be verified that !im bj t) = bj exists. Thus,

K+1 1
b, =§ﬂm ’ ;bj =1 (7)

Remark: A quasi-birth-and-death (QBD) process is a bivariate Markov process which is an extension of
the standard birth-and-death process. When the transitions of a QBD process are independent of the
states, it is termed a homogeneous or level-independent QBD process. Otherwise, it is termed as
inhomogeneous or level-dependent QBD (LDQBD) process.

2.2 LINEAR LEVEL REDUCTION

This section applies the linear level reduction method and develops a computational algorithm
for the evaluation of the stationary probability vector IT of the non-homogeneous QBD process X(t)
under study. The procedure developed by Latouche and Ramasamy (1999) for transition matrices of
finite quasi-birth and death processes (QBDs) is extended to the respective generators of the same

QBDs. This extension needs to formulate restricted QBD process {Xi(t)} on the space
S =U <)L (n) by removing the first *i" levels, one level at each step where i=1, 2,..., K.

Lemmal

For i=0, 1, 2, . . ., K, the generator matrix of the restricted process {Xi(t)} on the set

Si =U ccenyL () is given by

©Scopus/Elsevier Page No : 53 opticaltechnique.com



Optical Technique(1002-1582) Volume 32 Issue 3 2023 Impact Factor: 5.8

Cu Al 0 0 0
AV AL AL 0 0
o [0 AP ATAR 0 0
Q=10 0 aAPAPAY 0 0
K+1 K+1
0 0 0 0 . . AFTYARY
®)
and Q“*=C, _,, where the matrix C;, fori=1,2,..., K, records the rates of returning to the level i
before reaching the level “i+1' starting from the level "i' and are recursively defined as follows:
C,=A? C =AY+ AD(C _)TAI™M  for i=1,2, ... K, (K+1) 9)

It is noticed that the matrix (~C;*A{’) records the first passage probabilities from level L(i)to
L(i+1).

Theorem 1 Suppose the stationary probability vector IT= ( II,, II,,IL,, ..., II,, ) is determined
by

M, C.,=0.TL =1, A{"*Y (-C)™" for i=K,K-1, ...,2,1,and 0 (10)

i+1
Let e=[1,1] be a column vector of order 2 of unit elements. Then
zosné(k+l) Hn e=1 (11)

Proof: Modifying the arguments of Latouche and Ramasamy (1999) to the case of generators of finite
QBDs, Lemma 1 and Theorem 1 can be proved. Equation (10) characterizes the stationary distribution

In= ( o, 11, ,11,, ..., I,,,) up to a multiplicative constant which is determined by (11). Linear
reduction algorithm for the computation of the stationary probability vector II.

Now, for a given set of (4, 24(n), 14, (n)) values, one can compute numerical values of each 7 , and

7T 0 »forn=0,1,2,...,(K+1). The mean number of customers in the system is

K+1

I—(K+l) = bl+zn an (12)
n=0
Theorem 2 If y,(n)=0 for n=0, 1, 2,. . . K+1 then the sequence {a, :n=0 ,1,2, ..., (K+1)} of

probability values defined by (6) and the set {b; }defined by (7) are given by
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a, =[1+> 41 f[ <5 I a,=]] ek a (13)
na i (1) B,=0

Proof: Substituting $ z,(n) =0 for n=0, 1, 2,{\dots}K in (8), it is found that the matrix (-C,)™" A"
becomes an identity matrix of order 2 and hence each of C_ = A™ + Al” becomes a diagonal matrix of
order 2 with diagonal elements '—A, ' while

_ﬂ’k +1 Ak+l j

0 0 (14)

CK+1 — A:(LKJrl) +AgK+1) (_CK)—IA(OK) — (
Solving of I, Cy,; =0 and 7,1y, + 7,1y =1, leads to the fact that
-1
”(k+1)0 _ (_ﬂ(km 1] (O) (15)
T (k411 0 1 1
Tkay0 =0 and 7y, =1. Now computing vectors of (9)

ie. TII=IT, A" (-C)* for i=K,K-1,...,21 and 0 for i=K,K-1..,2,1 and 0
recursively, it can be shown that

k+1
7,20 )
A
k k+1 k
Ty =0 - = = )”kl - 44l )'ﬂl( )
hs e A
k (j+D
Tk-2y0 = 0 k21 = Hj:k—z A 1
i
k (j+)
Tk-3)0 = 0 (k-3 = Hj:k—B £ 1

k (j+2)
o =0 01 Hj:o = 2 (16)
]
K+l 7. .
Multiplying each 7,; , j=0,1 of (16) by 7, H = and simplifying the result, we get
iz (1)
Ty = 7oy
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n A
T, = ”01'1_[1_1% forn=12,..,K (17)
(1

k+1 ﬂ,j_l
k1 = ”011_[1':1
g

Remark:

Remark : In this case a, = z,, forn=0,1, ... ,(k+1).
Lemma 2 The steady state probability b, of Eq. (7) can also be obtained by a direct argument as

A
b =— Tk +1)0 (18)
Y7

2

Proof: The time dependent marginal probability b; (t) = P(X,(t) = j) that the slow server is in state j at
time t >0 for j=0, 1 satisfies

00 =45 B0+ 4700 (19)

Result of Eq. (18) follows from Eq. (19) since the !im b; (t) =b, exists. For z,(n)=0andn=0, 1,2, ...
,K+1 then the mean queue length of the state dependent M/M/1/(K+1) queue is obtained as below:

K+1

0
IS
n=0

Theorem 3

Suppose A=A, g4 (n) =g, and gi,(n) = 2, =0 for n=0, 1, ... (K+1) the sequence { &, } tends
to the (state independent) queue length (queue + service) distribution of the M/M/1/K+1 queue,

ie.,

a = d=p)ol n=0,1,2,...(K+1) (20)

n o 1_pl(|<+2) !
Proof: Substitutions of 4, =4, g4(n) =24 and z,(n) =, =0 for n=0, 1, . .. ,(K+1) in (15) ensure
that

n A

i A
(i-1) n
T, :|| ~ =z, (—)" for n=12,...,,K
e T
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K+1
Implementation of (14), p, = i and the normalizing condition Zan =1, establish the statement (16).
/Jl n=0
Further it follows that
@-p)p
Ay =T kan :]-_;732), |—0,1,2,...(K+1) (21)
1

We also note that X 1 (t) represents the queue length process in an M/M/1/(K+1) loss system (see Medhi
(1975), Prabu (1965), and Sivazlian (1975)) and {a, = !im P[X,t)=n:n=0,12,...,(k+1)]} is the
marginal steady-state queue length distribution as found in Baily(1957). It is interesting to remark that all
these results {7;;i=0,12,...,(k+1) and j=0,1} , {bj;j=0,1} and {a, :n=0,1,...,(k +1)}sofar derived

ij?
by the matrix analytic methods agree with the corresponding expressions obtained by Sivasamy(2016)
through scalar analytical methods.

2.3 STEADY STATE RESULTS FOR M /(M,,M,)/2(B,, B,) QUEUE WITH STALLING

Assume that A, >0, £(n)>0, and z,(n)>0, for n=0,1,2,. .. ,(K+1). Let A=A, =4,
= (N) = (K+1),and g, = 1,(n) = 1, (K +2) for n=(K+2),(K+3), ..., «.

Letr= g, /o, u= g+, p= Alpuand p= A/ . Let p<1andwe continue with the
same notations as in the M/(M,,M , )/2 /((K+1),B,) modified system. Replacing the notation X(t) = (X 1
(t), X 2(t) :t=>0) defined in the preceding modified system by Y (t) = (Y,(t),Y,(t) :t >0) to monitor the
transitions of M /(M,,M,)/2/(B,,B,) queue with stalling described in Figure 1, this section presents
the analysis of the underlying queueing process {Y (t)} on the full two dimensional state space {L(n);
n=0,1,2,...,(K+1)} \U{ (K+2),(K+3), ..., o} through a linking mechanism.

Let the sequence of steady state probabilities be {p, = !Lrg P(Y,(t))=i:1=0,1,...,}and

a; =, P(y,(t) =i,y,(®) = j) for i€{0,1,2,...,(k+1)} and j e{0,1}. For this extension, there exists

Ttow

a proportionality constant, say /= /3 (K), expected to be a function of K such that

a; =p 7T forie{0,1,2,...(K+1)}and j {0,1} (22)
P =, B 3 forief{0,1,2,...(K+1)} (23)
P = g o fori= (K +2) (24)

Hence the normalizing condition Z p, =1$ yields that
i=0

©Scopus/Elsevier Page No : 57 opticaltechnique.com



Optical Technique(1002-1582) Volume 32 Issue 3 2023 Impact Factor: 5.8

__1-p
1-p+p Zean

(25)

Further fraction of the time “Slow Server is busy’, say D, , is given by

T+t P

D, = plb, +?

] (26)

The mean number L, of customers of the system can now be calculated which is

L=3np,+D, @)
n=0

Further, D, the probability that fraction of the time the fast server is busy is

K+1 0

D, :ﬁ(zﬁnl)"'_z P; (28)

=K+3

Substituting for b, of (7) and 7, inthevalue D, of (26) one can obtain the same expression

as in D, of (28) since each gives the probability of the same event. Now the mean number L, of

customers inclusive of those are being served is L ,= Zn p, + D, , which simplifies to

n=0
P T l(K+2)A-p) + o}
L =41 L(|<+1) + — 2 ] (29)
1-p)
Lemma3 If 4, >0, 4 (n+1)>0,forn=0,1,2,...,(K+1)and z,(n)=0 forn=0,1,2,...(K+1)and
Ay = =4>0, t(N)=4(K+2) =1 >0, t(N) = 1, (K+1) = 11, >0 for

n=(K+2),(K+3),..., 0 then substitution of b =0 into L(k+1) of (12) and (29) gives the mean
queue length of the state dependent M / My + My, /1 queue with a T(=K+2) policy as

L, = K+1n a +2 . {(K+2)A-p)+ o} 30
ﬂ[nZ:;‘ " (1-p)° : 0
Lemma 4 If A >0, &(n)>0, x(n)=0 for n=0, 1, 2, . .. ,(K+1) and A =4, =4>0,

i (nN) = (K+1) =4 >0, g1,(n) = 12,=0 for n=(K+2),(K+3), ..., o0 then substitution of b, =0 into
L., of (12) and (30) gives the mean queue length of the state dependent M /M, /1queue as

L = ,B[Kzﬂn a + A 3 {(K+2)A-p)+ pl}] (31)

(1_,01)2
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It is expected that the mean values L, , L, and L, stated by (29),(30)and (31) respectively satisfy an

intra-relationship L, > L, > L,. Using this inequality statement, it is possible to do a comparison and
draw conclusion with regard to advantages of preferring one model over the remaining models.

Consider the state independent Y, (t) process representing the queue length process of an M/M/1 system.

Lemma5 Let A =4, g(n)=y4 and g,(n) =4, =0 for n=0, 1, ... (K+1), in (29) through (31)
then the sequence {p,} tends to the queue length (queue +service) distribution of the M/M/1 queue.

Proof: If A =4, g4(n) =44 and z,(n) = g, =0 for n=0, 1, ... (K+1), value of 7.,y is given by
(21). Using (21) inthe p value (25), it reduces to

Y =1—le+2 (32)
Substituting the £ of (32) in those values of p, of (23) and (24) for i=0,1,2,...,00, this lemma is
proved, i.e.,

P = !Lrg PV,(t)=n:n=01...}=1-p)p (33)

Expected number (queue +service) of customers (L, say) of the M/M/1 system is then given by

L= (34)

2.3.1RESULTSFOR M /M, + M, /1 QUEUES WITH A T (=K+2) POLICY

Xuelu Zhang et al., (2015) considered a (state independent) single server queueing system with a
threshold control policy and studied the monotonicity, convexity or concavity properties of the key
performance measures of the system. If the number of customers in the system is less than a threshold

value T say, the service rate is set in a low value x ;>0 and can be switched to a high value (z + 1)

> 14,>0 once the number of customers reaches the threshold.

Let g, be the steady state probability to find "n' customers in the system subject to the condition
p=A1(p +u ,)<1lfor n=0,12,...,00. The queue length distribution of the M / M, + M, /1 queue
under T-policy due to Xuelu Zhang et al.,(2015) can be obtained by assigning 4, =4, z4(n) =z, and
() =0 forn=0, 1, ... (K+1) but z,(n)= g, >0 for n=(K+2),(K+3),. . . ,00 and T=(K+2) in those
7r;; values of the modified Loss system of M [ (M;,M,)/2 [(K+1),B,) queues with stalling and no

waiting space when A # u , p =

A
and p, =—:
Mt Hy
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1-p)1-p)
Qo = n — (35)
P 1-p)A-p D)+ p o (A= p)
G =0, o, forie{0,1,2,...(K+1)} (36)
Oek+14i)=% Pl(K+1) p' for i>0 (37)

Expected number (queue + service) E(Q)=L, say, of customers in the system of M /M, + M, /1 queue
with a T =(K+2) policy is

A-pl™), (L) | (K +1>p1“(p—pl)j )
1-p) @-p) (1-p)A-p)

When g, =0 further for n=(K+1), (K+2), ..., «, value of L, of (38) reducesto L, of (34).

L, :qopl(

3. APPLICATIONS: OPTIMIZATION PROBLEMS

There are several two-server applications where customers know the reasons for stalling of
customers. Such scenarios can be seen with agents in an airport check-in, tellers in a bank, cashiers in a

supermarket, etc. The proposed model M /(M,,M,)/2/(B,,B,) has a variety of applications in

computer communication networks and local area networks (LANs) which have channels to transmit
packets of data to different destinations.

A
Mt i,

3.1 BEST VALUE OF K FOR A GIVEN INPUT SET (A4, t4, 1,) WHILE p= <1

Lin and Kumar (1984) investigated a generalized type of M/M/2 queueing system with two
heterogeneous servers and have shown that the optimal policy which minimizes the mean sojourn time of
customers in the system is of a “threshold policy', which is equivalent to fixing the optimum buffer size
K(finite) of the buffer B1 of the model M /(M,,M,)/2/(B,,B,) with stalling. For an application,
assume that the two servers at a petrol filling station follow all the regulations of the queueing system
M/M,;, M,/2/(B,, B,) discussed so far. Further all customers who come to this service center have
the chance of paying the fuel price either by cash or with a credit card. Following points are informed to
the customers:

i) Buffer B, area is inside the petrol selling and filling station which accepts credit card and it

stalls customers in queue-1 of size K like 5 or 6.
i) Buffer B, area is located adjacent to the B, stall of the filling station (which does not

accept credit card) where customers form queue-2 like that of queue of vehicles waiting at the
national highway of a country (adjacent to the filling stations) without disturbing the road
traffic.

iii) No customer can leave the system after entering the Queue and there is no jockeying in the
system.
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It aims to fix the optimum buffer size K, of buffer B, by comparing the mean queue lengths, L,
of the M /( M;,M,)/2/(B,,B,) system ,state dependent mean queue length L, of M/ M,+M,/1
with a T =(K+2) policy given by (26) and the state dependent mean queue length L, i.e. (27) of M/M/1
system. An optimization problem can be stated as “minimize K value (from below ) and find K subject
to the constraint  L{" > LY > L, for n <K, corresponding to a given set of input (4,, £ (n), 1,(n))
values'. For obtaining such a maximum value K, of K, required condition is

A <1 forn > (K+2) . For an illustration, one set of input values is
w4 (K+1)+ 1,(K+2)
selected by A, =10.0375-(n/1.75), z4(n)=12.5+(n/40.0), 1,(n)=1.25 and the corresponding results

computed and recorded in Table 1:

p:

Table -1: Input values on A, =10.0375—(n/1.75), x4 (n)=12.5+(n/40.5), 1,(n) =1.25 to check if
L> L,>L, n=0,1,2,...,(K+1)and K>1 is an integer variable.

K A0 [ pel) [ | L L, L, D,

1 8.8946428 | 12.550 1.25 2.580 2.163 2.208 0.6601
2 8.3232145 | 12.575 1.25 2.256 2.035 2.036 0.4598
3 7.7517862 | 12.600 1.25 2.075 1.965 1.946 0.2924
4 7.1803575 | 12.625 1.25 1.979 1.298 1.906 1.1713
5 6.6089292 | 12.650 1.25 1.932 1.909 1.892 1.0924
6 6.0375004 | 12.675 1.25 1.909 1.901 1.889 0.0457

The results from the Table 1 are not surprising. Among the state dependent parameters selected,
arrival rate decreases and service rate of the fast server increases with increasing K values. One of the

findings is that all mean queue lengths L, L, and L, decrease as K value increases. It is of interest to
note that L > L, <L; for K=1and 2 and the condition L > L, > L, is satisfied for K=3,4,5 and 6; a
local minimum size of K for buffer B, is 3i.e. K, = 3. Inthis case, chances of finding slow server in its
busy state is reported under column D, which decreases steadily with increasing K values. Hence, for the
existing state dependent rates of arrival and service patterns, as long as buffer B, is bounded with K=1
and 2 it is advisable to avoid the slow server. However if the size K of the buffer B, is 3 or more, in

order to reduce the queue length considerably, the slow server of the M /( M,,M,)/2/(B,,B,)
service facility is to be installed.

4. SUMMARY

This paper analyses a two-server M /(M,,M,)/2/(B,,B,) queueing system with stalling where

customers are served by one fast server and one slow server. The servers are allowed to work in parallel.
It has provided a finite buffer B, of size "K<oo' to stall customers in queue-1 which is meant to feed the
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fast sever only. There is one more buffer B, of infinite capacity, called the waiting space to accept

further arrivals in queue-2 when the buffer B, is full. The primary task of B, is to feed customers to

gueue-1 and to the slow server as and when it is warranted. An arriving customer who finds the queue-1 is
full and queue-2 is empty joins the slow server. If the queue-2 is non-empty at a time epoch when the
slow server finishes a service, he accepts a customer from the head of the queue-2. Both arrival and
service rates of customers are assumed to be state dependent parameters for the first (K+2) states starting
from state "0'. Formulating the queue length (queue +service) process of the whole system as a QBD
processes, steady state results to state probabilities and mean queue length have been obtained using
matrix-analytical methods. One special feature is that the stationary queue length distribution is obtained

in two stages: Stage-1 deals with the finite capacity queue M /(M;,M,)/2/B, and for the

determination of the "K+2' boundary characteristics of stage-1 substantial effort is shown in terms of
generator matrices. In addition, it outlines interesting computational properties through an accompanying
numerical illustration. Exploiting the Markov property of the QBD process, stage-1 results are linked to
the stage-2 which helps to obtain the whole queue length distribution and its characteristics in compact
and closed form expressions.

After the completion of linking process in these two stages, the queue length distribution of the
M/M/1 queue under T-policy (see Xuelu Zhang, et al. (2015) ) is deducted as a specific case from the

results of the M /(M,,M,)/2/(B,,B,) system with stalling. To support the viable applications of the

proposed queueing system with stalling in the area of computer networks and manufacturing industries,
numerical illustrations are provided. one optimization problem for maximizing the value of K subject to

a constraint involving the mean queue lengths of M /(M,,M,)/2/(B,,B,), M/M+M/1 and M/M/1

queues is formulated and solved. As a direction for future research, the authors wish to extend the
proposed methodology of this study to other service industries like three-server and multi-server queues

with stalling and to the M/G,M/2/ (B, ,B , ) and M/M,G/2/ (B, ,B , ) queues with stalling.
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